Printed Page:- 03			Subjec	et Co	ode	:- <i>/</i>	ACS	E0:	515				
	- u = u	9	Roll. N			• 1		V	- 10				
					$\overline{}$								
NO	IDA	INSTITUTE OF ENGINEERING AN	ND TI	ECH	<u> </u>)L(GY	, G	RE	ATE	RN	OII)A
		(An Autonomous Institute Affil		to A	\K'	TU,	Luc	ekn	ow)				
		B.Tec		TAN	T (6	1022		004	`				
		SEM: V - THEORY EXAM: Subject: Machin				2023) - 2(J <i>Z</i> 4	•)				
Tim	e: 3 I	Hours	ic Lc	41 111)	ug]	Max	. M	arks	: 100
Gener	al In	structions:											
		y that you have received the question pa	_										
		estion paper comprises of three Sections	-A, B	, &	<i>C</i> . <i>I</i>	It co	onsis	ts c	of Mi	ıltipl	le C	hoic	e
		MCQ's) & Subjective type questions. marks for each question are indicated	on ric	aht -	har	nd ci	deo	for	ach c	nuost	ion		
		e your answers with neat sketches where					ue o	jei	ich g	juesi	w.		
		suitable data if necessary.			,								
•		ly, write the answers in sequential order											
		should be left blank. Any written materia	al afte	er a	bla	nk s	heet	wi	ll no	t be			
evaluc	itea/c	hecked.											
SECT	ION-	<u>-A</u>											20
1. Atte	empt a	all parts:-											
1-a.		examples of Ordinal data can be (CO1)											1
	(a)	ID Numbers, eye color, zip codes) ^k							
	(b)	Rankings, taste of potato chips, grade	s, hei	ght									
	(c)	Calendar dates, temperatures in Celsiu			enh	eit,	phor	ne n	numb	ers			
	(d)	Temperature in Kelvin, length, time,	A				•						
1-b.	Id	dentify the type of learning in which labe	eled tı	aini	ng (data	is u	sed	l. (C0	O 1)			1
	(a)	Semi Supervised learning			Ü				`	ŕ			
	(b)	Supervised Learning											
	(c)	Reinforcement Learning											
	(d)	Unsupervised Learnng											
1-c.	W	We can compute the coefficient of linear	regres	ssion	ı by	usi	ng (CO	2)				1
	(a)	gradient descent											
	(b)	Normal Equation											
	(c)	both A and B											
	(d)	None of above											
1-d.	Ir	n a logistic regression model, the decisio	n bou	ndar	ус	an t	oe (C	CO2	2)				1
	(a)	Linear											
	(b)	Non-linear											
	(c)	Both (A) and (B)											

	(d)	None of these					
1-e.	Which of the following is NOT True about Ensemble Techniques? (CO3)						
	(a)	Bagging decreases the variance of the classifier.					
	(b)	Boosting helps to decrease the bias of the classifier.					
	(c)						
	resu	lts.					
	(d)	Bagging and Boosting are the only available ensemble techniques.					
1-f.	D	ecision Tree is (CO3)	1				
	(a)	Flow-Chart					
	(b) repr	Structure in which internal node represents test on an attribute, each branch esents outcome of test and each leaf node represents class label					
	(c) bran	Flow-Chart & Structure in which internal node represents test on an attribute, each ch represents outcome of test and each leaf node represents class label					
	(d)	None of the mentioned					
1-g.	R	einforcement learning is- (CO4)	1				
	(a)	Unsupervised learning					
	(b)	Supervised learning					
	(c)	Award based learning					
	(d)	None					
1-h.	Which crossover method is not exist in Genetic Algorithm (CO4)						
	(a)	Single					
	(b)	Multi					
	(c)	Uniform					
	(d)	Random					
1-i.	D	oes gradient boosted trees generally perform better than random forest? (CO5)]				
	(a)	Yes					
	(b)	No					
	(c)	Can't say					
	(d)	None					
1-j.	Which of the following is true about Xgboost (CO5)						
	(a)	Like any other boosting method, XGB is sensitive to outliers					
	(b)	Unlike LightGBM, in XGB, one has to manually create dummy variable/label					
	before feeding to the model						
	(c)	1 or 2 both					
	(d)	None of these					
2. Atte	empt a	all parts:-					
2.a.	D	efine the role of Machine Learning in our daily life. (CO1)	2				
2.b.	В	riefly explain the formulas to find RMSE and MSE. (CO2)	2				

2.c.	Naive Bias is a classification algorithm or regression algorithm, describe. (CO3)			
2.d.	Provide an intuitive explanation of what is a Policy in Reinforcement learning. (CO4)			
2.e.	Explain ensemble technique that is used by gradient boosting trees (CO5)	2		
SECTI	ON-B	30		
3. Answ	ver any <u>five</u> of the following:-			
3-a.	Explain Various Machine Learning Libraries and its importance. (CO1)	6		
3-b.	Explain the candidate elimination algorithm. (CO1)	6		
3-c.	Can we solve the multiclass classification problems using Logistic Regression? If Yes then How? (CO2)	6		
3-d.	Explain overfitting and underfitting. What causes overfitting? (CO2)	6		
3.e.	Explain ID3 algorithm with example. (CO3)	6		
3.f.	Compare Q-Learning and Policy Gradients methods.(CO4)	6		
3.g.	Discuss one real-world scenario where you have used xgboost.(CO5)	6		
SECTI	<u>ON-C</u>	50		
4. Answ	ver any <u>one</u> of the following:-			
4-a.	Explain One hot encoding. What is the problem with One hot encoding (CO1)	10		
4-b.	Describe in detail all the steps involved in designing a learning system. (CO1)	10		
5. Answ	ver any one of the following:-			
5-a.	Explcain confusion matrix. Explain accuracy, precision and recall with example. (CO2)	10		
5-b.	Explain when will you use Classification over Regression. Justify your answer with example. (CO2)	10		
6. Answ	ver any <u>one</u> of the following:-			
6-a.	Explain SVM with their kernel functions. (CO3)	10		
6-b.	Differentiate Post-pruning and Pre-pruning methods. Also give the requirements of Post-pruning and Pre-pruning (CO3)	10		
7. Answ	ver any one of the following:-			
7-a.	Describe PCA in detail. Also explain the work of PCA. (CO4)	10		
7-b.	List down the steps of Genetic algorithm with example. (CO4)	10		
8. Answ	ver any <u>one</u> of the following:-			
8-a.	Explain different types of Memory-Based Collaborative approaches (CO5)	10		
8-b.	How are Knowledge-based Recommender Systems different from Collaborative and Content-based Recommender Systems? Discuss applications of Recommender Systems. (CO5)	10		